Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain.
نویسندگان
چکیده
Neural progenitor cells persist throughout the adult forebrain subependyma, and neurons generated from them respond to brain-derived neurotrophic factor (BDNF) with enhanced maturation and survival. To induce neurogenesis from endogenous progenitors, we overexpressed BDNF in the adult ventricular zone by transducing the forebrain ependyma to constitutively express BDNF. We constructed a bicistronic adenovirus bearing BDNF under cytomegalovirus (CMV) control, and humanized green fluorescent protein (hGFP) under internal ribosomal entry site (IRES) control. This AdCMV:BDNF:IRES:hGFP (AdBDNF) was injected into the lateral ventricles of adult rats, who were treated for 18 d thereafter with the mitotic marker bromodeoxyuridine (BrdU). Three weeks after injection, BDNF averaged 1 microg/gm in the CSF of AdBDNF-injected animals but was undetectable in control CSF. In situ hybridization demonstrated BDNF and GFP mRNA expression restricted to the ventricular wall. In AdBDNF-injected rats, the olfactory bulb exhibited a >2.4-fold increase in the number of BrdU(+)-betaIII-tubulin(+) neurons, confirmed by confocal imaging, relative to AdNull (AdCMV:hGFP) controls. Importantly, AdBDNF-associated neuronal recruitment to the neostriatum was also noted, with the treatment-induced addition of BrdU(+)-NeuN(+)-betaIII-tubulin(+) neurons to the caudate putamen. Many of these cells also expressed glutamic acid decarboxylase, cabindin-D28, and DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa), markers of medium spiny neurons of the neostriatum. These newly generated neurons survived at least 5-8 weeks after viral induction. Thus, a single injection of adenoviral BDNF substantially augmented the recruitment of new neurons into both neurogenic and non-neurogenic sites in the adult rat brain. The intraventricular delivery of, and ependymal infection by, viral vectors encoding neurotrophic agents may be a feasible strategy for inducing neurogenesis from resident progenitor cells in the adult brain.
منابع مشابه
Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone.
Neurogenesis from endogenous progenitor cells in the adult forebrain ventricular wall may be induced by the local viral overexpression of cognate neuronal differentiation agents, in particular BDNF. Here, we show that the overexpression of noggin, by acting to inhibit glial differentiation by subependymal progenitor cells, can potentiate adenoviral BDNF-mediated recruitment of new neurons to th...
متن کاملAgonistic encounters in aged male mouse potentiate the expression of endogenous brain NGF and BDNF: possible implication for brain progenitor cells' activation.
The condition of dominance or submission following agonistic encounters in the adult male mouse is known to differentially affect brain nerve growth factor, a neurotrophin playing a role in brain remodeling, in the fine tuning of behaviour and in the regulation of the basal forebrain cholinergic neurons. During development and adult life nerve growth factor regulates brain expression of neurotr...
متن کاملVasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling.
Adult neuronal precursors retain the remarkable capacity to migrate long distances from the posterior (subventricular zone) to the most anterior [olfactory bulb (OB)] parts of the brain. The knowledge about the mechanisms that keep neuronal precursors in the migratory stream and organize this long-distance migration is incomplete. Here we show that blood vessels precisely outline the migratory ...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملHuman Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro
Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 17 شماره
صفحات -
تاریخ انتشار 2001